集合的含义及其表示教学设计
教学目标:
1.使学生理解集合的含义,知道常用集合及其记法;
2.使学生初步了解“属于”关系和集合相等的意义,初步了解有限集、无限集、空集的意义;
3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合.
教学重点:
集合的含义及表示方法.
教学过程:
一、问题情境
1.情境.
木兰诗译文
新生自我介绍:介绍家庭、原毕业学校、班级.
2.问题.
在介绍的过程中,常常涉及像“家庭”、“学校”、“班级”、“男生”、“女生”等概念,这些概念与“学生×××”相比,它们有什么共同的特征?
二、学生活动
1.介绍自己;
2.列举生活中的集合实例;
3.分析、概括各集合实例的共同特征.
三、数学建构
1.集合的含义:一般地,一定范围内不同的、确定的.对象的全体组成一个集合.构成集合的每一个个体都叫做集合的一个元素.
2.元素与集合的关系及符号表示:属于,不属于.
3.集合的表示方法:
另集合一般可用大写的拉丁字母简记为“集合A、集合B”.
4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R.
5.有限集,无限集与空集.
6.有关集合知识的历史简介.
四、数学运用
1.例题.
例1 表示出下列集合:
(1)中国的直辖市;(2)中国国旗上的颜色.
小结:集合的确定性和无序性
例2 准确表示出下列集合:
(1)方程x2―2x-3=0的解集;
(2)不等式2-x<0的解集;
(3)不等式组 的解集;
(4)不等式组 2x-1≤-33x+1≥0的解集.
解:略.
小结:(1)集合的表示方法——列举法与描述法;
(2)集合的分类——有限集⑴,无限集⑵与⑶,空集⑷
例3 将下列用描述法表示的集合改为列举法表示:
(1){「x,」| x+ = 3,x N, N }
(2){「x,」| = x2-1,|x |≤2,x Z }
(3){| x+ = 3,x N, N }
(4){ x R | x3-2x2+x=0}
小结:常用数集的记法与作用.
例4 完成下列各题:
(1)若集合A={ x|ax+1=0}=,求实数a的值;
(2)若-3{ a-3,2a-1,a2-4},求实数a.
小结:集合与元素之间的关系.
2.练习:
(1)用列举法表示下列集合:
①{ x|x+1=0};
②{ x|x为15的正约数};
③{ x|x 为不大于10的正偶数};
幼儿园师德师风培训内容记录3月
④{「x,」|x+=2且x-2=4};
⑤{「x,」|x∈{1,2},∈{1,3}};
⑥{「x,」|3x+2=16,x∈N,∈N}.
(2)用描述法表示下列集合:
①奇数的集合;②正偶数的集合;③{1,4,7,10,13}
五、回顾小结
(1)集合的概念——集合、元素、属于、不属于、有限集、无限集、空集;
(2)集合的表示——列举法、描述法以及Venn图;
(3)集合的元素与元素的个数;
(4)常用数集的记法.
六、作业
课本第7页练习3,4两题.